Source code for thelper.nn.mobilenet

# MobileNet v2 derived from https://github.com/tonylins/pytorch-mobilenet-v2
import math

import torch.nn as nn

import thelper


[docs]def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) )
[docs]def conv_1x1_bn(inp, oup): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) )
class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super().__init__() self.stride = stride if stride not in [1, 2]: raise AssertionError("stride should be 1 or 2") self.use_res_connect = self.stride == 1 and inp == oup self.conv = nn.Sequential( # pw nn.Conv2d(inp, inp * expand_ratio, 1, 1, 0, bias=False), nn.BatchNorm2d(inp * expand_ratio), nn.ReLU6(inplace=True), # dw nn.Conv2d(inp * expand_ratio, inp * expand_ratio, 3, stride, 1, groups=inp * expand_ratio, bias=False), nn.BatchNorm2d(inp * expand_ratio), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(inp * expand_ratio, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(thelper.nn.Module): def __init__(self, task, input_size=224, width_mult=1.): # note: must always forward args to base class to keep backup super().__init__(task, input_size=input_size, width_mult=width_mult) # setting of inverted residual blocks self.interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # building first layer if input_size % 32 != 0: raise AssertionError("input size should be multiple of 32 px") input_channel = int(32 * width_mult) self.last_channel = int(1280 * width_mult) if width_mult > 1.0 else 1280 self.features = [conv_bn(3, input_channel, 2)] # building inverted residual blocks for t, c, n, s in self.interverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: self.features.append(InvertedResidual(input_channel, output_channel, s, t)) else: self.features.append(InvertedResidual(input_channel, output_channel, 1, t)) input_channel = output_channel # building last several layers self.features.append(conv_1x1_bn(input_channel, self.last_channel)) self.features.append(nn.AvgPool2d(input_size // 32)) # make it nn.Sequential self.features = nn.Sequential(*self.features) # building classifier self.classif_features = 1000 # default count, will be updated if needed self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(self.last_channel, self.classif_features), ) self._initialize_weights() self.set_task(task) def forward(self, x): x = self.features(x) x = x.view(-1, self.last_channel) x = self.classifier(x) return x def set_task(self, task): assert isinstance(task, thelper.tasks.Classification), "missing impl for non-classif task type" num_classes = len(task.class_names) if num_classes != self.classif_features: self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(self.last_channel, num_classes), ) self.classif_features = num_classes self.task = task def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_()