Source code for thelper.nn.resnet

import typing

import torch
import torch.nn
import torch.utils.model_zoo

import thelper.nn
import thelper.nn.coordconv


[docs]def get_activation_layer(name: typing.AnyStr) -> torch.nn.Module: # todo: support more prebuilt/custom layer types here, if needed... assert name in ["relu", "leaky_relu"] if name == "relu": return torch.nn.ReLU(inplace=True) elif name == "leaky_relu": return torch.nn.LeakyReLU(inplace=True)
class Module(torch.nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, coordconv=False, radius_channel=True): super().__init__() self.inplanes = inplanes self.planes = planes self.stride = stride self.downsample = downsample self.coordconv = coordconv self.radius_channel = radius_channel def _make_conv2d(self, *args, **kwargs): if self.coordconv: return thelper.nn.coordconv.CoordConv2d(*args, radius_channel=self.radius_channel, **kwargs) else: return torch.nn.Conv2d(*args, **kwargs) class BasicBlock(Module): def __init__(self, inplanes, planes, stride=1, downsample=None, coordconv=False, radius_channel=True, activation="relu"): super().__init__(inplanes, planes, stride, downsample, coordconv, radius_channel) self.conv1 = self._make_conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = torch.nn.BatchNorm2d(planes) self.activ = get_activation_layer(activation) self.conv2 = self._make_conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = torch.nn.BatchNorm2d(planes) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.activ(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.activ(out) return out class Bottleneck(Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, coordconv=False, radius_channel=True, activation="relu"): super().__init__(inplanes, planes, stride, downsample, coordconv, radius_channel) self.conv1 = self._make_conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = torch.nn.BatchNorm2d(planes) self.conv2 = self._make_conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = torch.nn.BatchNorm2d(planes) self.conv3 = self._make_conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = torch.nn.BatchNorm2d(planes * self.expansion) self.activ = get_activation_layer(activation) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.activ(out) out = self.conv2(out) out = self.bn2(out) out = self.activ(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.activ(out) return out class SqueezeExcitationLayer(torch.nn.Module): def __init__(self, channel, reduction=16, activation="relu"): super().__init__() self.pool = torch.nn.AdaptiveAvgPool2d(1) self.fc = torch.nn.Sequential( torch.nn.Linear(channel, channel // reduction), get_activation_layer(activation), torch.nn.Linear(channel // reduction, channel), torch.nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class SqueezeExcitationBlock(Module): def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16, coordconv=False, radius_channel=True, activation="relu"): super().__init__(inplanes, planes, stride, downsample, coordconv, radius_channel) self.conv1 = self._make_conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = torch.nn.BatchNorm2d(planes) self.activ = get_activation_layer(activation) self.conv2 = self._make_conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = torch.nn.BatchNorm2d(planes) self.se = SqueezeExcitationLayer(planes, reduction, activation=activation) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.activ(out) out = self.conv2(out) out = self.bn2(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.activ(out) return out class ResNet(thelper.nn.Module): def __init__(self, task, block="thelper.nn.resnet.BasicBlock", layers=[3, 4, 6, 3], strides=[1, 2, 2, 2], input_channels=3, flexible_input_res=False, pool_size=7, head_type=None, coordconv=False, radius_channel=True, activation="relu", skip_max_pool=False, pretrained=False, conv1_config=[7, 2, 3]): # note: must always forward args to base class to keep backup super().__init__(task, **{k: v for k, v in vars().items() if k not in ["self", "task", "__class__"]}) if isinstance(block, str): block = thelper.utils.import_class(block) if not issubclass(block, Module): raise AssertionError("block type must be subclass of thelper.nn.resnet.Module") if isinstance(layers, str): assert layers in ["18", "34"], "unknown basic block layer depth string postfix" if layers == "18": layers = [2, 2, 2, 2] elif layers == "34": layers = [3, 4, 6, 3] if not isinstance(layers, list) or not isinstance(strides, list): raise AssertionError("expected layers/strides to be provided as list of ints") if len(layers) != len(strides): raise AssertionError("layer/strides length mismatch") # NOTE: conv1_config=[7,2,3] is the basic configuration of ResNet. # other configuration more suitables for CIFAR for example can use conv1_config[3,1,1] assert isinstance(conv1_config, list) and \ len(conv1_config) == 3 and all(isinstance(c, int) for c in conv1_config), \ "conv1 configuration must be a list of 3 parameters defining [kernel_size,stride,padding]" self.input_channels = input_channels self.flexible_input_res = flexible_input_res self.pool_size = pool_size self.head_type = head_type self.coordconv = coordconv self.radius_channel = radius_channel self.pretrained = pretrained self.inplanes = 64 self.conv1 = self._make_conv2d( in_channels=input_channels, out_channels=self.inplanes, kernel_size=conv1_config[0], stride=conv1_config[1], padding=conv1_config[2], bias=False) self.bn1 = torch.nn.BatchNorm2d(self.inplanes) self.activ = get_activation_layer(activation) if skip_max_pool: self.maxpool = None else: self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], activation=activation) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], activation=activation) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], activation=activation) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], activation=activation) self.out_features = 512 self.layer5 = None if len(layers) > 4: self.layer5 = self._make_layer(block, 1024, layers[4], stride=strides[4]) self.out_features = 1024 if flexible_input_res: self.avgpool = torch.nn.AdaptiveAvgPool2d(1) else: if pool_size < 1: raise AssertionError("invalid avg pool size for non-flex resolution") self.avgpool = torch.nn.AvgPool2d(pool_size, stride=1) self.out_features *= block.expansion self.fc = torch.nn.Linear(self.out_features, 1000) # output type/count will be specialized by task after init self._init_weights(activation) if pretrained: # note: if using a non-default setup in the constructor, loading the pre-trained weights will most # likely fail as the weights are downloaded from the pytorch model zoo for the regular resnet impls import torchvision default_weights_mapping = { str([2, 2, 2, 2]) + str("BasicBlock"): "resnet18", str([3, 4, 6, 3]) + str("BasicBlock"): "resnet34", str([3, 4, 6, 3]) + str("Bottleneck"): "resnet50", str([3, 4, 23, 3]) + str("Bottleneck"): "resnet101", str([3, 8, 36, 3]) + str("Bottleneck"): "resnet152" } tag = str(layers) + block.__name__ assert tag in default_weights_mapping, "could not find corresponding weight url" weights_url = torchvision.models.resnet.model_urls[default_weights_mapping[tag]] state_dict = torchvision.models.utils.load_state_dict_from_url(weights_url) self.load_state_dict(state_dict) if isinstance(task, thelper.tasks.Segmentation): # if base task is already associated with segmentation, add head attribute if head_type is not None: # can also be manually defined (e.g. in autoencoder) assert isinstance(head_type, str) and head_type in ["fcn", "deeplabv3"], \ f"unrecognized head type ('{head_type}') for segmentation resnet" # note: head below will be fully instantiated when the task is assigned self.fc = None self.set_task(task) def _init_weights(self, activation): for m in self.modules(): if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.ConvTranspose2d): torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity=activation) elif isinstance(m, thelper.nn.coordconv.CoordConv2d) or isinstance(m, thelper.nn.coordconv.CoordConvTranspose2d): torch.nn.init.kaiming_normal_(m.conv.weight, mode='fan_out', nonlinearity=activation) elif isinstance(m, torch.nn.BatchNorm2d): torch.nn.init.constant_(m.weight, 1) torch.nn.init.constant_(m.bias, 0) for m in self.modules(): if isinstance(m, Bottleneck): torch.nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock) or isinstance(m, SqueezeExcitationBlock): torch.nn.init.constant_(m.bn2.weight, 0) def _make_conv2d(self, *args, **kwargs): if self.coordconv: return thelper.nn.coordconv.CoordConv2d(*args, radius_channel=self.radius_channel, **kwargs) else: return torch.nn.Conv2d(*args, **kwargs) def _make_layer(self, block, planes, blocks, stride, activation): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = torch.nn.Sequential( self._make_conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), torch.nn.BatchNorm2d(planes * block.expansion), ) layers = [block(self.inplanes, planes=planes, stride=stride, downsample=downsample, activation=activation)] self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return torch.nn.Sequential(*layers) def get_embedding(self, x, pool=True): x = self.conv1(x) x = self.bn1(x) x = self.activ(x) if self.maxpool is not None: x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.layer5 is not None: x = self.layer5(x) if pool: x = self.avgpool(x) x = x.view(x.size(0), -1) return x def forward(self, x): if isinstance(self.task, thelper.tasks.Classification): return self.fc(self.get_embedding(x, pool=True)) elif isinstance(self.task, thelper.tasks.Segmentation): return self.fc(self.get_embedding(x), pool=False) def set_task(self, task): assert isinstance(task, (thelper.tasks.Classification, thelper.tasks.Segmentation)), \ "missing impl for non-classif task type" num_classes = len(task.class_names) if isinstance(task, thelper.tasks.Classification): if self.fc.out_features != num_classes: self.fc = torch.nn.Linear(self.out_features, num_classes) elif isinstance(task, thelper.tasks.Segmentation): import torchvision.models.segmentation # note: heads below will be fully reinstantiated when the output class count changes if self.fc is None or self.fc[len(self.fc) - 1].out_channels != num_classes: if self.head_type == "fcn": self.fc = torchvision.models.segmentation.fcn.FCNHead(self.out_features, num_classes) elif self.head_type == "deeplabv3": self.fc = torchvision.models.segmentation.deeplabv3.DeepLabHead(self.out_features, num_classes) self.task = task class ConvTailNet(torch.nn.Module): """DEPRECATED. Will be removed in a future version.""" def __init__(self, n_inputs, num_classes): super(ConvTailNet, self).__init__() self.conv1 = torch.nn.Conv2d(n_inputs, n_inputs, kernel_size=1, bias=False) self.relu = torch.nn.ReLU(True) self.conv2 = torch.nn.Conv2d(n_inputs, n_inputs, kernel_size=1, bias=False) self.conv3 = torch.nn.Conv2d(n_inputs, num_classes, kernel_size=1, bias=False) def forward(self, x): x0 = x x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.relu(x) x = torch.add(x0, x) x = self.conv3(x) return x class ResNetFullyConv(ResNet): """DEPRECATED. Will be removed in a future version. Use the torchvision segmentation models or the ResNet above instead.""" def __init__(self, task, block="thelper.nn.resnet.BasicBlock", layers=[3, 4, 6, 3], strides=[1, 2, 2, 2], input_channels=3, flexible_input_res=False, pool_size=7, coordconv=False, radius_channel=True, pretrained=False): super().__init__(task=task, block=block, layers=layers, strides=strides, input_channels=input_channels, flexible_input_res=flexible_input_res, pool_size=pool_size, coordconv=coordconv, radius_channel=radius_channel, pretrained=pretrained) self.set_task(task) def forward(self, x): x = self.get_embedding(x, pool=False) x = self.avgpool(x) x = self.fc(x) x = torch.squeeze(x) return x def set_task(self, task): assert isinstance(task, thelper.tasks.Classification), "missing impl for non-classif task type" num_classes = len(task.class_names) self.fc = ConvTailNet(self.out_features, num_classes) self.task = task class FCResNet(ResNet): """Fully Convolutional ResNet converter for pre-trained classification models.""" def __init__(self, task, ckptdata, map_location="cpu", avgpool_size=0): if isinstance(ckptdata, str): ckptdata = thelper.utils.load_checkpoint(ckptdata, map_location=map_location) model_type = ckptdata["model_type"] if model_type != "thelper.nn.resnet.ResNet": raise AssertionError("cannot convert non-resnet model to fully conv with this impl") model_params = ckptdata["model_params"] if isinstance(ckptdata["task"], str): old_model_task = thelper.tasks.create_task(ckptdata["task"]) else: old_model_task = ckptdata["task"] self.task = None self.avgpool_size = avgpool_size super().__init__(old_model_task, **model_params) self.load_state_dict(ckptdata["model"], strict=False) # assumes model always stored as weight dict self.finallayer = torch.nn.Conv2d(self.out_features, self.fc.out_features, kernel_size=1) self.finallayer.weight = \ torch.nn.Parameter(self.fc.weight.view(self.fc.out_features, self.out_features, 1, 1)) self.finallayer.bias = torch.nn.Parameter(self.fc.bias) self.set_task(task) def forward(self, x): x = self.get_embedding(x, pool=False) if self.avgpool_size > 0: x = torch.nn.functional.avg_pool2d(x, kernel_size=self.avgpool_size, stride=1) x = self.finallayer(x) return x def set_task(self, task): assert isinstance(task, (thelper.tasks.Segmentation, thelper.tasks.Classification)), \ "missing impl for non-segm/classif task type" num_classes = len(task.class_names) if self.fc.out_features != num_classes: self.fc = torch.nn.Linear(self.out_features, num_classes) self.finallayer = torch.nn.Conv2d(self.out_features, num_classes, kernel_size=1) self.finallayer.weight = \ torch.nn.Parameter(self.fc.weight.view(self.fc.out_features, self.out_features, 1, 1)) self.finallayer.bias = torch.nn.Parameter(self.fc.bias) self.task = task class AutoEncoderResNet(ResNet): """Autoencoder-classifier architecture based on ResNet blocks+layers configurations.""" def __init__(self, task, output_pads=None, **kwargs): assert isinstance(task, thelper.tasks.Classification) super().__init__(task, activation="leaky_relu", **kwargs) convt = thelper.nn.coordconv.CoordConvTranspose2d if self.coordconv else torch.nn.ConvTranspose2d self.decoder_top = torch.nn.Sequential( thelper.nn.coordconv.CoordConv2d( self.out_features, self.out_features, kernel_size=1, stride=1, padding=0 ), torch.nn.BatchNorm2d(self.out_features), torch.nn.LeakyReLU(), ) self.decoder_depths = [self.out_features // 2 ** d for d in range(0, 5)] self.output_pads = output_pads if not None else [1, 1, 1, 1, 1] self.decoder_layers = torch.nn.ModuleList([ torch.nn.Sequential( convt(depth, depth // 2, kernel_size=3, stride=2, padding=1, output_padding=out_pad), torch.nn.BatchNorm2d(depth // 2), torch.nn.LeakyReLU(), ) for depth, out_pad in zip(self.decoder_depths, self.output_pads) ]) self.decoder_bottom = torch.nn.Sequential( thelper.nn.coordconv.CoordConv2d( self.decoder_depths[-1] // 2, self.input_channels, kernel_size=3, stride=1, padding=1, ), torch.nn.Tanh() ) self._init_weights(activation="leaky_relu") # note: cannot rely on pretrained imagenet weights since we reset just above def forward(self, input): featmap = self.get_embedding(input, pool=False) embedding = self.avgpool(featmap) embedding = embedding.view(embedding.size(0), -1) class_logits = self.fc(embedding) featmap = self.decoder_top(featmap) for decoder_layer in self.decoder_layers: featmap = decoder_layer(featmap) reconstruction = self.decoder_bottom(featmap) return class_logits, reconstruction class FakeModule(torch.nn.Module): def forward(self, inputs): return inputs class AutoEncoderSkipResNet(ResNet): """Autoencoder-U-Net architecture based on ResNet blocks+layers configurations.""" def __init__(self, task, output_pads=None, decoder_dropout=False, dropout_prob=0.1, **kwargs): assert isinstance(task, thelper.tasks.Segmentation) super().__init__(task, activation="leaky_relu", **kwargs) convt = thelper.nn.coordconv.CoordConvTranspose2d if self.coordconv else torch.nn.ConvTranspose2d pass_through_layer = FakeModule() self.decoder_top = torch.nn.Sequential( thelper.nn.coordconv.CoordConv2d( self.out_features, self.out_features, kernel_size=1, stride=1, padding=0 ), torch.nn.BatchNorm2d(self.out_features), torch.nn.Dropout2d(p=dropout_prob) if decoder_dropout else pass_through_layer, torch.nn.LeakyReLU(), ) self.output_pads = output_pads if not None else [1, 1, 1, 1, 1] self.ae_decoder_depths = [self.out_features // 2 ** d for d in range(0, 5)] self.ae_decoder_layers = torch.nn.ModuleList([ torch.nn.Sequential( convt(depth, depth // 2, kernel_size=3, stride=2, padding=1, output_padding=out_pad), torch.nn.BatchNorm2d(depth // 2), torch.nn.Dropout2d(p=dropout_prob) if decoder_dropout else pass_through_layer, torch.nn.LeakyReLU(), # try w/ regular? @@@@ ) for depth, out_pad in zip(self.ae_decoder_depths, self.output_pads) ]) self.ae_decoder_bottom = torch.nn.Sequential( thelper.nn.coordconv.CoordConv2d( self.ae_decoder_depths[-1] // 2, self.input_channels, kernel_size=3, stride=1, padding=1, ), torch.nn.Tanh() ) self.unet_decoder_depths = [ (self.out_features, self.out_features // 2, self.out_features // 2), (self.out_features, self.out_features // 4, self.out_features // 4), (self.out_features // 2, self.out_features // 8, self.out_features // 8), (self.out_features // 4, self.out_features // 8, self.out_features // 8), (self.out_features // 4, self.out_features // 8, self.out_features // 8), ] self.unet_decoder_layers = torch.nn.ModuleList([ torch.nn.Sequential( convt(d_in, d_mid, kernel_size=3, stride=2, padding=1, output_padding=out_pad), torch.nn.BatchNorm2d(d_mid), torch.nn.LeakyReLU(), # try w/ regular? @@@@ self._make_conv2d(d_mid, d_out, kernel_size=3, stride=1, padding=1, bias=False), torch.nn.BatchNorm2d(d_out), torch.nn.Dropout2d(p=dropout_prob) if decoder_dropout else pass_through_layer, torch.nn.LeakyReLU(), # try w/ regular? @@@@ ) for (d_in, d_mid, d_out), out_pad in zip(self.unet_decoder_depths, self.output_pads) ]) assert self.unet_decoder_depths[-1][2] > len(self.task.class_names), "woopsie" self.unet_decoder_bottom = torch.nn.Conv2d( self.unet_decoder_depths[-1][2], len(self.task.class_names), kernel_size=1, stride=1, padding=0, ) self._init_weights(activation="leaky_relu") # note: cannot rely on pretrained imagenet weights since we reset just above def forward(self, input): # forward while keeping refs for latent build? @@@ encoder1 = self.activ(self.bn1(self.conv1(input))) if self.maxpool is not None: encoder2 = self.layer1(self.maxpool(encoder1)) else: encoder2 = self.layer1(encoder1) encoder3 = self.layer2(encoder2) encoder4 = self.layer3(encoder3) encoder5 = self.layer4(encoder4) assert self.layer5 is None, "missing e5+ impl" featmap = self.decoder_top(encoder5) reconstruction = featmap for decoder_layer in self.ae_decoder_layers: reconstruction = decoder_layer(reconstruction) reconstruction = self.ae_decoder_bottom(reconstruction) encoder_maps = [None, encoder4, encoder3, encoder2, encoder1] for decoder_layer, encoder_map in zip(self.unet_decoder_layers, encoder_maps): if encoder_map is not None: featmap = torch.cat([featmap, encoder_map], dim=1) featmap = decoder_layer(featmap) class_logits = self.unet_decoder_bottom(featmap) return class_logits, reconstruction